The Index of an Infinite Dimensional Implicit System
نویسندگان
چکیده
The idea of the index of a differential algebraic equation (DAE) (or implicit differential equation) has played a fundamental role in both the analysis of DAEs and the development of numerical algorithms for DAEs. DAEs frequently arise as partial discretizations of partial differential equations (PDEs). In order to relate properties of the PDE to those of the resulting DAE it is necessary to have a concept of the index of a possibly constrained PDE. Using the finite dimensional theory as motivation, this paper will examine what one appropriate analogue is for infinite dimensional systems. A general definition approach will be given motivated by the desire to consider numerical methods. Specific examples illustrating several kinds of behavior will be considered in some detail. It is seen that our definition differs from purely algebraic definitions. Numerical solutions, and simulation difficulties, can be misinterpreted if this index information is missing.
منابع مشابه
An Implicit Difference-ADI Method for the Two-dimensional Space-time Fractional Diffusion Equation
Fractional order diffusion equations are generalizations of classical diffusion equations which are used to model in physics, finance, engineering, etc. In this paper we present an implicit difference approximation by using the alternating directions implicit (ADI) approach to solve the two-dimensional space-time fractional diffusion equation (2DSTFDE) on a finite domain. Consistency, unconditi...
متن کاملWhen the classical & quantum mechanical considerations hint to a single point; a microscopic particle in a one dimensional box with two infinite walls and a linear potential inside it
In this paper we have solved analytically the Schrödinger equation for a microscopic particle in a one-dimensional box with two infinite walls, which the potential function inside it, has a linear form. Based on the solutions of this special quantum mechanical system, we have shown that as the quantum number approaches infinity the expectation values of microscopic particle position and square ...
متن کاملAn Alternating Direction Implicit Method for Modeling of Fluid Flow
This research includes of the numerical modeling of fluids in two-dimensional cavity. The cavity flow is an important theoretical problem. In this research, modeling was carried out based on an alternating direction implicit via Vorticity-Stream function formulation. It evaluates different Reynolds numbers and grid sizes. Therefore, for the flow field analysis and prove of the ability of the sc...
متن کاملTwo-Phase Nanofluid Thermal Analysis over a Stretching Infinite Solar Plate Using Keller Box Method (KBM)
In the present study, two-phase nanofluid flow in a three-dimensional system is modeled over a stretching infinite solar plate and the heat transfer analysis is performed for this problem. The governing equations are presented based on previous studies and the suitable solution method is recommended due to infinite boundary condition in the problem. Keller Box Method (KBM) using the Maple 1...
متن کاملApplication of a One-Dimensional Computer Model to Flood Routing in Narrow Rivers
This paper deals with the development of a computer model for flood routing in narrow rivers. Equations describing the propagation of a flood wave in a channel-flood plain system are presented and solved using an implicit finite difference scheme. Particular emphasis has been given to the treatment of the friction term in the governing equation of motion.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996